Electrical Formulas

Electrical Formulas									
To Find	Alternating Current								
10 T IIIu	Single-Phase	Three-Phase							
Amperes when horsepower is known	Hp X 746 E X Eff X pf	Hp X 746 1.73 X E Eff X pf							
Amperes when kilowatts are known	Kw X 1000 E X pf	Kw X 1000 1.73 X E X pf							
Amperes when Kva are known	Kva X 1000 E	Kva X 1000 1.73 X E							
Kilowatts	1XEX pf 1000	1.73 X I X E X pf 1000							
Kva	1XE 1000	1.73 X I X E 1000							
Horsepower = (Output)	1 X E X Eff X pf 746	1.73 X I X E X Eff X pf 746							

I = Amperes; E = Volts; Eff = Efficiency; pf = power factor; Kva = Kilovolt Amperes; Kw = Kilowatts; R = Ohms (Resistance).

General Information (Approximation)

To Find

Amperes when voltage and

resistance is known Voltage when resistance

and current are known Resistance when voltage

and current are known

All values at 100% Load

At 1800 rpm, a motor develops 36 lb. -In. Per hp At 1200 rpm, a motor develops 54 lb. -In. Per hp At 575 volts, a 3-phase motor draws 1 amp per hp At 460 volts, a 3-phase motor draws 1.25 amps per hp At 230 volts, a 3-phase motor draws 2.5 amps per hp At 230 volts, a single-phase motor draws 5 amps per hp At 115 volts, a single-phase motor draws 10 amps per hp

Alternating or

Direct Current E

R

IR

E

Temperature Conversion:

Deg C = (Deg F -32) X 5/9 Deg F = (Deg C X 9/5) + 32

Calculating Yearly Energy Savings

Savings = (Hours Operation/ Year) (Power Cost) (* Kilowatts Saved)

*Kw saved = HP x .746 $\left[\frac{1}{\text{Std. Eff.}} - \frac{1}{\text{XE Eff.}} \right]$

EXAMPLE: 25 HP, 1800 RPM, TEFC, XE vs. Std. Eff. Price Premium @ User

XE Net \$1396 - Std. Eff. Net. \$1061

Motor Amps @ Full Load*

un	Alternating Current		DC UD	ЦΒ	Alternating Current		DC	НР	Alternating Current		DC	HP	Alternating Current		DC
HP	Single- Phase	3- Phase	DC	HP	Single- Phase	3- Phase	DC	ПР	Single- Phase	3- Phase	DC	ПР	Single- Phase	3- Phase	50
1 1 2 3	4.9 8.0 10.0 12.0 17.0	2.0 3.4 4.8 6.2 8.6	2.7 4.8 6.6 8.5 12.5	5 7 10 15 20	28 40 50 -	14.4 21.0 26.0 38.0 50.0	20 29 38 56 74	25 30 40 50 60	-	60 75 100 120 150	92 110 146 180 215	75 100 125 150 200	•	180 240 300 360 480	268 355 443 534 712

^{*} Values are for all speeds and frequencies @ 230 volts. Amperage other than 230 volts can be figured:

EXAMPLE:

For 60 hp, 3-phase @ 550 volts:

 $\frac{(230 \text{ X } 150)}{550}$ = 62 amps.

V = 230 X Amp from Table

NEMA Electrical Enclosure Types

Type	Description	Type	Description			
NEMA Type 1 (General Purpose)	For indoor use wherever oil, dust or water is not a problem.	NEMA Type 5 Dust Tight (Non-Hazardous)	Used for excluding dust. (All NEMA 12 and JIC enclosures are usually suitable for NEMA 5 use)			
NEMA Type 2 (Driptight)	Used indoors to exclude falling moisture and dirt.	NEMA Type 9 Dust Tight	For locations where combustible dusts			
NEMA Type 3 (Weatherproof)	Provides protection against rain, sleet and snow.	(Hazardous) ‡	are present.			
NEMA Type 4 (Watertight) **	Needed when subject to great amounts of water from any angle-such as areas which are repeatedly hosed down.	NEMA Type 12 (Industrial Use)	Used for excluding oil, coolant, flying dust, lint, etc.			

Note: Joint Industry Conference (JIC) enclosures are similar in design to NEMA 12's. For more complete details see NEMA or JIC Standards for enclosures.

- Not designed to be submerged.
- ‡ Class II Groups E, F, and G.